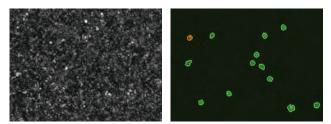

Cellometer[®] **Vision CBA** Image Cytometry System for 20µl Cell-Based Assays

Apoptosis Autophagy Cell Cycle Proliferation Transfection Viability and Others

Features of the Vision CBA Image Cytometry System

All-in-One System


Basic cell counting, primary cell viability, and cell-based assays.

Dual-Fluorescence for Accurate Primary Cell Viability No interference from red blood cells. Analyze bone marrow, peripheral blood, and cord blood without lysing.

Unique Algorithms for Advanced Cell Analysis Determine concentration and viability of hepatocytes, adipocytes, and other sophisticated cell types.

Fast Results

Obtain cell images, counts, size measurements, viability calculations, and population data in <3 minutes.

Bone Marrow Aspirate: bright field image and dual-fluorescence image showing live and dead nucleated cells present

Simple Cell-Based Assays

- Pre-qualified reagents
- Small 20µl sample size
- Simple, image-based analysis
- Pre-defined instrument settings
- Assay-specific data templates
- Accurate, consistent results

Advantages of Cellometer Image Cytometry

Cell Imaging

- Visually check cell morphology
- Ensure only cells of interest are counted
- Archive and re-analyze cell images
- Export images for publication

Proprietary Pattern-Recognition Software

- Count individual cells in clusters
- Count irregular-shaped cells
- Count cells based on size
- Eliminate debris from cell counts

Primary Hepatocytes: bright field image

Primary Adipocytes: bright field counted image

Non-Fluidic Platform

- Disposable counting chambers no washing
- Compatible with fragile cells
- Maintenance-free
- Robust optics modules and LED light sources

IQ/OQ Validation and GMP/GLP Accessories

- Installation Qualification reagents/protocol
- Operational Qualification reagents/protocol
- On-site IQ or OQ Performance
- GMP/GLP Software Module

Cellometer Vision CBA Image Cytometry System for Cell-Based Assays

Vision CBA combines the simplicity of image cytometry with the power of flow analysis software to offer simple, accurate cell-based assays.

Apoptosis Assays

Detect programmed cell death based on Annexin-V binding, Caspase activation, Chromatin condensation, or changes in mitochondrial membrane potential

Aggresome Detection Assay

Detect inclusion body formation in response to the accumulation of aggregating proteins

Autophagy Assay

Detect the breakdown of intra-cellular components by formation of autophagosomes and autolysosomes (special transport vesicles)

Cell Cycle Assays

Determine population distribution by cell cycle phase based on DNA content: resting/growth phase (G0/G1), DNA replication phase (S), cell division phase (G2M)

Multidrug Resistance (MDR) Assay

Detect multidrug resistance based on activity of ABC transporter proteins and the removal of compounds from the cell

Proliferation Assays

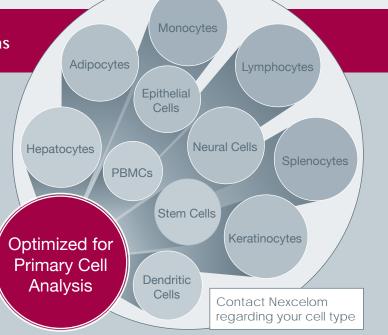
Measure cell division based on reduction of original cytoplasmic protein content (and fluorescence intensity) in each generation

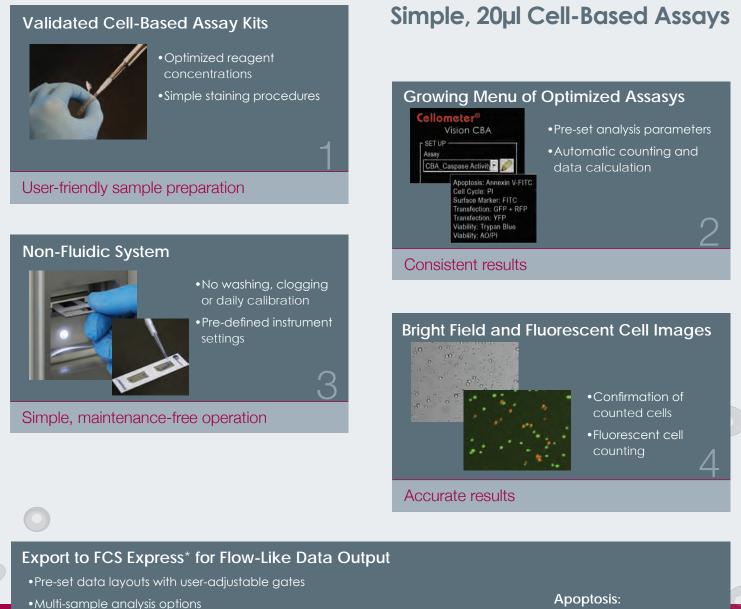
Surface Marker Assays

Quantify specific cell populations based on surface marker expression (CD56+ NK cells, CD34+ stem cells, etc.)

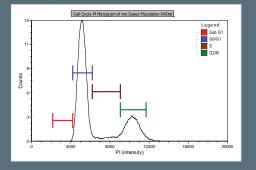
Transfection Assays

Determine the efficiency of transfection based on CFP, GFP, mCherry, RFP, TdTomato, or YFP expression


Viability Assays


Measure the number, concentration, and percentage of live and dead cells based on membrane integrity and/or metabolic activity

Validated Cell Types for Many Research Areas

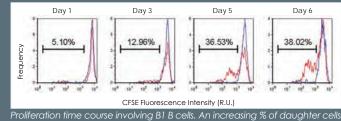


- Clinical Immunology: PBMCs
- Diabetes / Obesity: Adipocytes
- Immunotherapy: Leukocytes
- Microbiology: Yeast (Vision 10x)
- Oncology: Cell Lines
- Regenerative Medicine: Stem Cells
- Toxicology: Hepatocytes
- Transplantation: Nucleated Cells
- Vaccine Development: Splenocytes

Cell Cycle: Pl

Cell Population	% of Gated Cells	CV	Concentration (10^6 cells/mL)
Total	100		9.2
Sub G1	1.2	5.1	0.1
G0/G1	63.4	10.5	5.8
S	13.9	11.3	1.3
G2/M	21.0	8.2	1.9

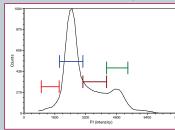
Comprehensive data: images, graphs, tables


GFP Transfection

Apoptosis: Annexin V-FITC / PI

5

Cell Poliferation: CFSE



exhibiting decreased fluorescence were observed on days 3, 5, and 6.

Proven Results

To demonstrate the Vision CBA Image Cytometry System for cell cycle analysis, Jurkat cells were incubated overnight with various concentrations of Nocodazole, a cell cycle-arresting drug. More than 40% of the cell population was arrested at the G2/M phase following incubation with 0.02 µg/mL Nocodazole. Cellometer Vision CBA results showed excellent correlation to results obtained with the LSRII flow cytometer.

Nocodazole Dose Response

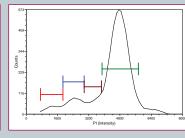


Figure 1. Cell cycle histogram following incubation with 0.004, and 0.1 $\mu\text{g}/\text{mL}$ Nocodazole

View Nexcelom Vision CBA Publications at:

www.nexcelom.com/CellometerPublications

Review data for cell cycle, proliferation, apoptosis and other cell-based assays; including correlation to traditional flow cytometry.

Correlation to Flow

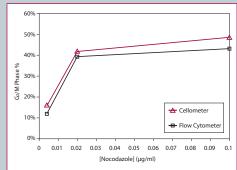


Figure 2. Percent of cells arrested at G2/M Phase

User-Changeable Fluorescence Optics Modules*

Individual Cellometer assays are designed to utilize specific optics modules for maximum performance and discrimination between fluorescence channels. Each Vision instrument accommodates two optics modules at one time. To change a module, users simply open the access panel at the rear of the instrument, depress the lever and remove the appropriate optics module, then insert the new one in its place. Standard modules are listed in the table below. Custom fluorescence optics modules are also available.

	Optics Module	Fluorophores	Nucleic Acid Stains	Fluorescent Proteins
Dapi	VB-450-302 Ex: 375 nm Em: 450 nm	AlexaFluor® 350	DAPI Hoechst 33342 Hoechst 33258	BFP CFP
Sytox Green	VB-535-402 Ex: 475 nm Em: 535 nm	Calcein FITC AlexaFluor® 488	AO (acridine orange, +DNA) SYTO [®] 9, SYTO [®] 13	GFP YFP
EB	VB-595-502 Ex: 525 nm Em: 595 nm	AlexaFluor® 546 AlexaFluor® 555, Cy3® PE (R-phycoerythrin) Rhodamine B	PI (propidium iodide) EB (ethidium bromide) SYTOX [®] Orange	57.5
7-AAD	VB-660-502 Ex: 540 nm Em: 660 nm	AlexaFluor [®] 647 7-AAD Nile Red	PI (propidium iodide) EB (ethidium bromide) AO (acridine orange, +RNA)	Ds Red RFP TdTomato
Sytox Red	VB-695-602 Ex: 630 nm Em: 695 nm	AlexaFluor [®] 647, Cy5 [®] APC (allophycocyanin)	SYTOX [®] Red	Crimson

*This table is a partial list of compatible fluorophores, nucleic acid stains, and fluorescent proteins. Please contact Nexcelom technical support regarding compatibility of other reagents. Sytox, AlexaFluor, and Cy are trademarks of Life Technologies.

See for Yourself Why the **Top Ten Pharmaceutical** Companies Trust Cellometer

On-Site Demonstrations are a convenient way to evaluate the Vision CBA System. An experienced Applications Specialist will arrive at your lab for a hands-on session to test your cells and demonstrate the Vision CBA for your application.

Technical Seminars are an excellent way to introduce Cellometer systems to a lab group or collaborators in different laboratories within an organization. A trained biologist will discuss and demonstrate the capabilities and advantages of Cellometer image cytometry for cell viability and cell-

Schedule a FREE on-line demonstration, on-site demonstration or technical seminar with a Nexcelom Applications Specialist today.

Call 978-327-5340 or E-mail info@nexcelom.com

Nexcelom products are for RESEARCH USE ONLY and are not approved for diagnostic or therapeutic use. © Copyright 2014 Nexcelom Bioscience LLC. All Rights Reserved.

For more information, visit www.nexcelom.com

Contact us at: Nexcelom Bioscience 360 Merrimack Street, Building 9 Lawrence, MA 01843, USA

Email: info@nexcelom.com Phone: 978.327.5340 Fax: 978.327.5341

